In launching Revolution Pi, we have brought an open, modular and inexpensive industrial PC based on the established Raspberry Pi to the market. Equipped with Raspberry Pi Compute Module, the base modules can, depending on requirements, be expanded seamlessly using appropriate I/O modules and fieldbus gateways.

Installed in a DIN rail housing, the base modules of the Revolution Pi already have USB, Ethernet and HDMI connections. The base modules and expansion modules are supplied with 24 volts which is the norm in the industry.

Revolution Pi is more to us than just a device. We believe it is time to break down the fossilized structures within the industry with the Open Source concept. We will reveal our source code and all the circuit diagrams belonging to Revolution Pi devices. Our customers should not be limited to our ideas and solutions. This allows you to give free rein to your own ideas. If the ideas are then exchanged just as freely with other users on the Revolution Pi platform, a strong community will develop. We will provide the tools for such networking with Facebook, video channels, forums and blogs. In the future, there will be an app store where you can search for solutions or provide them yourself. Together we are strong and can invent brilliant contributions for the challenges of the 4th industrial revolution.

Why Raspberry Pi?

Raspberry Pi has had an impressive career ever since its launch early 2012. By the end of 2020, the small and inexpensive single-board computer was sold more than 36 million times. Behind the development of Raspberry Pi was the idea of producing an inexpensive and simply constructed PC that could introduce kids and teenagers to the world of programming. Even though a great majority of Raspberry Pis in circulation today are used as a media centre at home, Raspberry Pi is also found increasingly in test environments and laboratories in the industry.

Raspberry Pi comes in a variety of versions. We at KUNBUS have decided in favour of the lesser known variant going by the name of Compute Module. Why? Quite simply because by using Compute Module, Raspberry Pi is limited to the most essential. We therefore had sufficient leeway to design its connections etc. in an industrially viable way.

Behind the development of Raspberry Pi was the idea of producing an inexpensive and simply constructed PC that could introduce kids and teenagers to the world of programming. Even though a great majority of Raspberry Pis in circulation today are used as a media centre at home, Raspberry Pi is also found increasingly in test environments and laboratories in the industry.

According to our experience, Raspberry Pi is an ideal device for developing simple PLCs. Because the circuit diagrams can be generated by the software we are currently offering for Raspberry Pi. As a result, we can develop a Raspberry Pi PLC for our customers that meets their needs in terms of functionality. We are currently working on such a PLC and will be happy to share it with our customers in the near future.

Revolution Pi can be expanded with a wide range of modules, such as Ethernet, USB, fieldbus gateways, sensors, and many other components that are available in the market.

Revolution Pi can also be used as a media centre in your home. You can use it to control your home automation system, or to create a home server for file sharing and media streaming.

Revolution Pi is more than just a device. It is a powerful tool for learning and experimenting in the field of electronics, programming, and automation. With Revolution Pi, you can create your own projects and develop your skills as an electronics engineer.
The base modules - the foundation of the revolution

RevPi Connect and RevPi Core are the central processing units of our modular system. By using the Raspberry Pi Compute module, the devices are largely compatible with a Raspberry Pi model 3/3+.

A very important element of our Revolution Pi base modules are their power supply units. To ensure that heat losses are kept to a minimum, we have used the most advanced and highly efficient DC-DC converters (overall efficiency > 80%), which generate the necessary operating voltages from the standard 24 V in industrial switching cabinets.

However, the base modules not only run within the standardised voltage range from 20.4 V to 28.8 V, but at just 10.7 V supply voltage as well\(^*\). Thus, car batteries or solar power systems can also be used as a voltage source. At 24 V supply, the devices can withstand a voltage drop of 10 ms without disruptions (at full load of the USB sockets) and even 25 ms without load at the USB sockets. The power supply voltage and a functional earthing are connected from below using a very robust connector.

A complex suppressor circuit guarantees unimpaired function even in the case of massive disruptions on the power supply line, provided that the functional earthing is connected. Lightning strikes or adjacent welding units were simulated in a certified test laboratory and could not affect the devices.

At the front are two USB-A sockets for connecting USB 2.0 client devices. Both sockets supply the full 500 mA current on the 5 V connections. As a result, USB hard disks or surf sticks can also be easily connected without an external, active hub. The micro-USB socket in the middle is used to connect a USB host system (normally a PC) and switches the system to the passive memory card mode. In this way, a PC can access an installed eMMC flash memory and store software there, for example.

A LAN can be connected at the RJ45 Ethernet socket. Alternatively, the connection to a LAN can be established via a WLAN-USB dongle. USB and Ethernet connections have a suppressor circuit. Irradiations or ESDs cannot harm the Revolution Pi system.

The Broadcom processor of the Compute Module provides high-resolution graphic functions. For this reason, the Revolution Pi base modules are fitted with a micro-HDMI socket at the top that can be used to connect a monitor with sound output. Thus, a fully equipped PC is available together with a mouse and keyboard.

The PiBridge is the data highway interconnecting the individual modules of Revolution Pi. Two adjacent modules on the top of the housing are each interconnected via a system connector.

Revolution Pi includes Raspbian as an operating system by default (a Debian variant) with a real-time patch of the kernel. Further information on software, drivers etc. can be found on page 5.

The Broadcom processor of the Compute Module provides high-resolution graphic functions. For this reason, the Revolution Pi base modules are fitted with a micro-HDMI socket at the top that can be used to connect a monitor with sound output. Thus, a fully equipped PC is available together with a mouse and keyboard.

The PiBridge is the data highway interconnecting the individual modules of Revolution Pi. Two adjacent modules on the top of the housing are each interconnected via a system connector.

Revolution Pi includes Raspbian as an operating system by default (a Debian variant) with a real-time patch of the kernel. Further information on software, drivers etc. can be found on page 5.

The base modules - the foundation of the revolution

RevPi Connect - for all who need more interfaces

Basic features:

- The RevPi Connect pays tribute to those users who want to use the Revolution Pi System as an IIoT gateway. Therefore, the base module was supplied with even more interfaces.
- Two Ethernet interfaces enable the device to be simultaneously integrated within the automation network and the IT network to transmit machinery data from, for example, the shop floor to the Cloud or a superordinate IT system.
- Lightening strikes or adjacent welding units were simulated in a certified test laboratory and could not affect the devices.
- A complex suppressor circuit guarantees unimpaired function even in the case of massive disruptions on the power supply line, provided that the functional earthing is connected.
- USB and Ethernet connections have a suppressor circuit. Irradiations or ESDs cannot harm the Revolution Pi system.
- The Broadcom processor of the Compute Module provides high-resolution graphic functions. For this reason, the Revolution Pi base modules are fitted with a micro-HDMI socket at the top that can be used to connect a monitor with sound output. Thus, a fully equipped PC is available together with a mouse and keyboard.
- The PiBridge is the data highway interconnecting the individual modules of Revolution Pi. Two adjacent modules on the top of the housing are each interconnected via a system connector.
- A LAN can be connected at the RJ45 Ethernet socket. Alternatively, the connection to a LAN can be established via a WLAN-USB dongle. USB and Ethernet connections have a suppressor circuit. Irradiations or ESDs cannot harm the Revolution Pi system.
- The Broadcom processor of the Compute Module provides high-resolution graphic functions. For this reason, the Revolution Pi base modules are fitted with a micro-HDMI socket at the top that can be used to connect a monitor with sound output. Thus, a fully equipped PC is available together with a mouse and keyboard.

RevPi Connect - for all who need more interfaces

The base modules - the foundation of the revolution

RevPi Connect and RevPi Core are the central processing units of our modular system. By using the Raspberry Pi Compute module, the devices are largely compatible with a Raspberry Pi model 3/3+.

A very important element of our Revolution Pi base modules are their power supply units. To ensure that heat losses are kept to a minimum, we have used the most advanced and highly efficient DC-DC converters (overall efficiency > 80%), which generate the necessary operating voltages from the standard 24 V in industrial switching cabinets.

However, the base modules not only run within the standardised voltage range from 20.4 V to 28.8 V, but at just 10.7 V supply voltage as well\(^*\). Thus, car batteries or solar power systems can also be used as a voltage source. At 24 V supply, the devices can withstand a voltage drop of 10 ms without disruptions (at full load of the USB sockets) and even 25 ms without load at the USB sockets. The power supply voltage and a functional earthing are connected from below using a very robust connector.

A complex suppressor circuit guarantees unimpaired function even in the case of massive disruptions on the power supply line, provided that the functional earthing is connected. Lightening strikes or adjacent welding units were simulated in a certified test laboratory and could not affect the devices.

At the front are two USB-A sockets for connecting USB 2.0 client devices. Both sockets supply the full 500 mA current on the 5 V connections. As a result, USB hard disks or surf sticks can also be easily connected without an external, active hub. The micro-USB socket in the middle is used to connect a USB host system (normally a PC) and switches the system to the passive memory card mode. In this way, a PC can access an installed eMMC flash memory and store software there, for example.

A LAN can be connected at the RJ45 Ethernet socket. Alternatively, the connection to a LAN can be established via a WLAN-USB dongle. USB and Ethernet connections have a suppressor circuit. Irradiations or ESDs cannot harm the Revolution Pi system.

The Broadcom processor of the Compute Module provides high-resolution graphic functions. For this reason, the Revolution Pi base modules are fitted with a micro-HDMI socket at the top that can be used to connect a monitor with sound output. Thus, a fully equipped PC is available together with a mouse and keyboard.

The PiBridge is the data highway interconnecting the individual modules of Revolution Pi. Two adjacent modules on the top of the housing are each interconnected via a system connector.

Revolution Pi includes Raspbian as an operating system by default (a Debian variant) with a real-time patch of the kernel. Further information on software, drivers etc. can be found on page 5.

The base modules - the foundation of the revolution

RevPi Connect and RevPi Core are the central processing units of our modular system. By using the Raspberry Pi Compute module, the devices are largely compatible with a Raspberry Pi model 3/3+.

A very important element of our Revolution Pi base modules are their power supply units. To ensure that heat losses are kept to a minimum, we have used the most advanced and highly efficient DC-DC converters (overall efficiency > 80%), which generate the necessary operating voltages from the standard 24 V in industrial switching cabinets.

However, the base modules not only run within the standardised voltage range from 20.4 V to 28.8 V, but at just 10.7 V supply voltage as well\(^*\). Thus, car batteries or solar power systems can also be used as a voltage source. At 24 V supply, the devices can withstand a voltage drop of 10 ms without disruptions (at full load of the USB sockets) and even 25 ms without load at the USB sockets. The power supply voltage and a functional earthing are connected from below using a very robust connector.

A complex suppressor circuit guarantees unimpaired function even in the case of massive disruptions on the power supply line, provided that the functional earthing is connected. Lightening strikes or adjacent welding units were simulated in a certified test laboratory and could not affect the devices.

At the front are two USB-A sockets for connecting USB 2.0 client devices. Both sockets supply the full 500 mA current on the 5 V connections. As a result, USB hard disks or surf sticks can also be easily connected without an external, active hub. The micro-USB socket in the middle is used to connect a USB host system (normally a PC) and switches the system to the passive memory card mode. In this way, a PC can access an installed eMMC flash memory and store software there, for example.

A LAN can be connected at the RJ45 Ethernet socket. Alternatively, the connection to a LAN can be established via a WLAN-USB dongle. USB and Ethernet connections have a suppressor circuit. Irradiations or ESDs cannot harm the Revolution Pi system.

The Broadcom processor of the Compute Module provides high-resolution graphic functions. For this reason, the Revolution Pi base modules are fitted with a micro-HDMI socket at the top that can be used to connect a monitor with sound output. Thus, a fully equipped PC is available together with a mouse and keyboard.

The PiBridge is the data highway interconnecting the individual modules of Revolution Pi. Two adjacent modules on the top of the housing are each interconnected via a system connector.

Revolution Pi includes Raspbian as an operating system by default (a Debian variant) with a real-time patch of the kernel. Further information on software, drivers etc. can be found on page 5.
Available expansion modules

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Item no.</th>
<th>RevPi Connect+ / Connect</th>
<th>RevPi Core 3+ / Core 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RevPi DIO</td>
<td>Digital IO module</td>
<td>100197</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi DI</td>
<td>Digital Input module</td>
<td>100195</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi DO</td>
<td>Digital Output module</td>
<td>100196</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi AIO</td>
<td>Analog IO module</td>
<td>100250</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi MIO</td>
<td>Analog & digital IO module</td>
<td>100323</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate PROFINET IRT</td>
<td>Gateway PROFINET IRT Device/Slave</td>
<td>100674</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate PROFIBUS</td>
<td>Gateway PROFIBUS Slave</td>
<td>100669</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate Ethernet/IP</td>
<td>Gateway Ethernet/IP Adapter/Slave</td>
<td>100666</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate DeviceNet</td>
<td>Gateway DeviceNet Adapter/Slave</td>
<td>100671</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate EtherCAT</td>
<td>Gateway EtherCAT Slave</td>
<td>100673</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate POWERLINK</td>
<td>Gateway POWERLINK Ch/Slave</td>
<td>100676</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate SERCOS III</td>
<td>Gateway SERCOS III Slave</td>
<td>100675</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate ModbusTCP</td>
<td>Gateway Modbus TCP Slave</td>
<td>100688</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate ModbusRTU</td>
<td>Gateway Modbus RTU Slave</td>
<td>100690</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate CANopen</td>
<td>Gateway CANopen Slave</td>
<td>100670</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate DMX</td>
<td>Gateway DMX Master/Slave</td>
<td>100237</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Gate Serial</td>
<td>Gateway Serial Slave</td>
<td>100668</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Con M-Bus</td>
<td>Wireless M-Bus module (868 MHz)</td>
<td>100281</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Con M-Bus VHP</td>
<td>Wireless M-Bus module (169 MHz)</td>
<td>100282</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RevPi Con CAN</td>
<td>CAN bus module</td>
<td>100286</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
The RevPi system to be expanded with analog inputs and outputs as well as temperature channels. Just like the digital I/O modules, these analog modules also have a 28-pin I/O connector on the front and are connected to the base modules via the PiBridge. Both are well equipped for tough everyday industrial use and are protected against static discharges, burst and surge impulses in accordance with the EN61131-2 standard.

RevPi Core 3, RevPi AIO and RevPi MIO on DIN rail.

Analog I/O modules

The two expansion modules RevPi AIO and RevPi MIO allow the RevPi system to be expanded with analog inputs and outputs as well as temperature channels. Just like the digital I/O modules, these analog modules also have a 28-pin I/O connector on the front and are connected to the base modules via the PiBridge. Both are well equipped for tough everyday industrial use and are protected against static discharges, burst and surge impulses in accordance with the EN61131-2 standard.

RevPi AIO offers 4 analog inputs, 2 analog outputs and 2 analog temperature channels.

RevPi MIO supplements our basic modules with 8 analog inputs, 8 analog outputs and as a goodie with 4 digital channels that can be individually configured via software either as inputs or outputs and are connected via the 4-pin connector on top.

The two RTD inputs enable temperatures to be measured with high precision from -165°C to +600°C in steps of 0.5°C using common RTDs sensors like Pt100/Pt1000 probes. The probes can be connected directly to the module with two, three or four cables.

The RevPi MIO is suitable for the network protocols shown below. All module variants have been tested and certified by the respective user organisations:

- EtherCAT
- CANopen
- DeviceNet
- PROFINET
- PROFIBUS

Fieldbus connection

It is not easy at all to integrate a device into an industrial network. Special protocols are often used for data transmission, such as PROFINET or PROFIBUS. When using our gateways – called RevPi Gate – integrating Revolution Pi into an industrial network is however no problem.

Like all Revolution Pi expansion modules, the gateways are also connected to the base module via the overhead PiBridge connector. Thus, up to two gateway modules (only applies for RevPi Core 3+) can be used per system. These, like all modules, are supplied with 24V volts that is the norm within the industry.

We have currently set the cycle time between the base module and a gateway to 5 ms by means of drivers. Though the gateway modules could reach cycle times of less than 2 ms, it would burden the system load of the base module disproportionately. For the lower the cycle times are set in the driver, the greater the system load is of the device that has to be expended for this process.

We currently offer gateways for the network protocols shown below.
Open source also with the software

Revolution Pi is a very flexible solution because we offer a great variety of software ready for use on the Revolution Pi hardware family. If you need an IoT tool or a PLC software - just choose the software which fits your needs. Here is a list of application programs which are already available for you (additional licensing costs may apply):

CODESYS

The manufacturer-independent IEC 61131-3 automation software for planning control systems turns the Revolution Pi into a small industrial controller. Thanks to the built-in soft master functionality for various industrial protocols, the Revolution Pi system can be integrated into an industrial network without the use of gateway modules.

RevPi Connect+ feat. CODESYS

- Additionally, the RevPi Connect+ is available with a preinstalled CODESYS Runtime license and offers a real alternative to complex and cost-intensive PLCs. Programmed with CODESYS according to IEC 61131-3, the controller has a 16 GB eMMC memory and is equipped with two RJ45 Ethernet sockets, two USB ports, a 4-pin RS485 interface, a micro-HDMI and a micro-USB socket. Integration into the CODESYS development environment is quick and easy by importing the device description files.
- Thanks to its modular design, it is possible to equip the RevPi Connect+ with suitable expansion modules such as I/Os, Fieldbus gateways and radio modules. These can be coupled to the base unit without tools via plug-and-play using a top-mounted connector, just as easily integrated into CODESYS and controlled and configured via the integrated development environment (IDE).

Node-RED

By means of software agent that is activated at the start, TeamViewer users can now also reach and remotely control their Revolution Pi devices via the internet. It is made possible by means of a very secure and user-friendly TeamViewer technology to access the RevPi webserver via a browser window. Available therefore are all the functions that can be processed via the server and the ones offering a browser.

TeamViewer

Thanks to the built-in soft master functionality for various industrial protocols, the Revolution Pi system can be integrated into an industrial network without the use of gateway modules.

logi.CAD 3

logi.CAD 3 is the engineering software for creating control applications meeting IEC 61131-3 for Revolution Pi. Special adaptations of the logi.RTS runtime system for Revolution Pi turn the device into a Soft-PLC for industrial applications.

Modbus TCP & Modbus RTU

Fully available via the PiCtory functions, Modbus Master and Slave can exchange data cyclically with the process image and therefore with all other SW components. The destination and intervals for communication with the Modbus protocol are freely configurable. It means that, alongside RevPi Gate, there’s an additional low-cost method of connecting a multitude of sensors, actuators and controllers to Revolution Pi devices.

Simple configuration with PiCtory

Every Revolution Pi system is supplied with the PiCtory configuration software. It enables you to define the positioning of hardware modules and the symbolic names of the input and output signals. Furthermore, PiCtory can also be used to configure connected hardware modules or installed drivers.

Revolution Pi is a high grade, modular and expandable system. For example, you can write your own drivers to integrate your special hardware seamlessly into the system. The central process image in the memory is the link between all components. The components, no matter whether they are hardware modules or software applications, always exchange their data with this process image. However to do so, drivers as well as software applications must know exactly where (at which address in the memory) the individual process values can be found.

PiCtory is a browser application. The server is preinstalled by us on the base modules. Alternatively, you can also use a PC program (Windows) which installs a small web server.

You can arrange the system you require online. There is preinstalled CODESYS Runtime license and offers a real alternative to complex and cost-intensive PLCs. Programmed with CODESYS according to IEC 61131-3, the controller has a 16 GB eMMC memory and is equipped with two RJ45 Ethernet sockets, two USB ports, a 4-pin RS485 interface, a micro-HDMI and a micro-USB socket. Integration into the CODESYS development environment is quick and easy by importing the device description files.

Thanks to its modular design, it is possible to equip the RevPi Connect+ with suitable expansion modules such as I/Os, Fieldbus gateways and radio modules. These can be coupled to the base unit without tools via plug-and-play using a top-mounted connector, just as easily integrated into CODESYS and controlled and configured via the integrated development environment (IDE).

DATA SPECIAL

Revolution Pi is a very flexible solution because we offer a great variety of software ready for use on the Revolution Pi hardware family. If you need an IoT tool or a PLC software - just choose the software which fits your needs. Here is a list of application programs which are already available for you (additional licensing costs may apply):

CODESYS

The manufacturer-independent IEC 61131-3 automation software for planning control systems turns the Revolution Pi into a small industrial controller. Thanks to the built-in soft master functionality for various industrial protocols, the Revolution Pi system can be integrated into an industrial network without the use of gateway modules.

RevPi Connect+ feat. CODESYS

Additionally, the RevPi Connect+ is available with a preinstalled CODESYS Runtime license and offers a real alternative to complex and cost-intensive PLCs. Programmed with CODESYS according to IEC 61131-3, the controller has a 16 GB eMMC memory and is equipped with two RJ45 Ethernet sockets, two USB ports, a 4-pin RS485 interface, a micro-HDMI and a micro-USB socket. Integration into the CODESYS development environment is quick and easy by importing the device description files.

Thanks to its modular design, it is possible to equip the RevPi Connect+ with suitable expansion modules such as I/Os, Fieldbus gateways and radio modules. These can be coupled to the base unit without tools via plug-and-play using a top-mounted connector, just as easily integrated into CODESYS and controlled and configured via the integrated development environment (IDE).

Node-RED

By means of software agent that is activated at the start, TeamViewer users can now also reach and remotely control their Revolution Pi devices via the internet. It is made possible by means of a very secure and user-friendly TeamViewer technology to access the RevPi webserver via a browser window. Available therefore are all the functions that can be processed via the server and the ones offering a browser.

TeamViewer

Thanks to the built-in soft master functionality for various industrial protocols, the Revolution Pi system can be integrated into an industrial network without the use of gateway modules.

logi.CAD 3

logi.CAD 3 is the engineering software for creating control applications meeting IEC 61131-3 for Revolution Pi. Special adaptations of the logi.RTS runtime system for Revolution Pi turn the device into a Soft-PLC for industrial applications.

Modbus TCP & Modbus RTU

Fully available via the PiCtory functions, Modbus Master and Slave can exchange data cyclically with the process image and therefore with all other SW components. The destination and intervals for communication with the Modbus protocol are freely configurable. It means that, alongside RevPi Gate, there’s an additional low-cost method of connecting a multitude of sensors, actuators and controllers to Revolution Pi devices.
The new ones: RevPi Compact & RevPi Flat

With the RevPi Compact and the RevPi Flat, we are presenting two new devices that – if you compare them with our well-known modules – will catch your eye at first glance with their changed design, their flat construction. This has happened for a good reason: Both modules can thus be easily and space-savingly installed in sub-distribution cabinets, which are usually found in building automation. In addition, they are not modular, but have extensive interfaces directly on board.

The RevPi Compact is our slim and cost-effective alternative to the RevPi Connect with its expansion modules and is usually completely sufficient for common automation solutions. Based on the Raspberry Pi Compute Module 3+, it impresses with real industrial capability, open-source capability and its high performance and functionality. The most important interfaces are already integrated.

The RevPi Flat is a versatile, freely programmable hardware platform developed for the energy industry. The device is also based on the Raspberry Pi Compute Module 3+ as well as Linux and is also WLAN-capable as a novelty in the RevPi family. The RevPi Flat can be used to implement a wide range of projects, for example for process optimisation, for more efficiency in data handling and for the implementation of new marketing strategies and concepts in the energy industry. Detailed information on both modules, their technical data including interfaces, performance features, etc. can be found on the product pages of our website: revolutionpi.com/revpi-compact/ revolutionpi.com/revpi-flat/

GET IN TOUCH

KUNBUS GmbH
Heerweg 15C
D-73770 Denkendorf

Web: revolutionpi.com
Forum: revolutionpi.com/forum
Manuals: revolutionpi.com/manual
eShop: revolutionpi.com/shop

youtube.com/RevolutionPi
github.com/RevolutionPi
linkedin.com/showcase/revolution-pi
twitter.com/kunbus_gmbh
facebook.com/RevolutionPi

Errors excepted and possible alterations without prior notice. Pictures may vary.